
IOURNAL OF 

GEOMETRY~,~r~ 
PHYSICS 

ELSEVIER Journal of Geometry and Physics 32 (1999) 57-78 

Darboux transformations on t imel ike constant mean 

curvature surfaces 

Jun-ichi Inoguchi 1 

Department of Applied Mathematics, Fukuoka Universit3; Nanakuma, Fukuoka, 814.0180 Japan 

Received 10 July 1998; received in revised form 28 January 1999 

Abstract 
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O. Introduction 

In 19th century geometry, one of  the central topics was the transformation theory of  sur- 

faces. The best known example might be the B~icklund transformation on constant negative 

curvature (CNC) surfaces in Euclidean 3-space E 3. 

Originally B~icklund transformation was defined as a transformation between CNC sur- 

faces. More precisely, the B~icklund transforamation was defined as a line congruence with 

pseudo-spherical  properties. See Eisenhart [11], Palais and Terng [22] for more details. 

Since the Gauss-Codazz i  equations of a CNC surface become the Sine--Gordon equa- 

tion with respect to the Chebyshev asymptotic coordinates, each B~icklund transformation 

induces a transformation between Sine-Gordon fields. The induced transfromation is also 

called a B~icklund transformation. A B~icklund transformation is reffered as an operation of 

adding solitions. The permutabil i ty theorem of  B~icklund transformation due to L. Bianchi 

is interpreted as a nonlinear superposition formula for the S ine-Gordon fields. 
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Bianchi also studied Biicklund type transformation on constant positive curvature (CPC) 

surfaces [11]. In 1973, Ablowitz et al. introduced 2 × 2 matrix zero curvature representation 
of the Sine--Gordon equation [ 1 ]. 

Nowadays transformations for solutions to a soliton equation which add solitons to a 

given solution are generally called Biicklund transformations. The construction of multi- 
soliton solutions (or quasiperiodic solutions) from the vacum solution by using Biicklund 

transformation are called the direct method. Date [8] and Zakharov et al. [38] developed 

the direct method for solving the Sine-Gordon and related equations. 
Recently, Sterling and Wente [30] studied Biicklund transformation on constant mean cur- 

vature (CMC) surfaces. Their starting point is that each CMC surface corresponds to a CPC 

surface (Bonnet transform or parallel surface). They formulated a B~icklund transformation 
for CMC surfaces by using the results due to Bianchi and Bonnet in modem literature. 

Further, Muto [26] has obtained another formulation of B~icklund transformation on CMC 
surfaces. Muto reformulated the direct method by Date as transformations on framings. 

Muto's transformation on framings is a Darbouxform of the Biickhind transformation in 
the sense of Gu [14]. We shall call Muto's transformation the Darboux transformation on 
CMC surfaces (or equivalently, on Sinh-Laplace fields). We refer to [ 14] and Matveev and 

Salle [23] for general theory of Darboux transformations. Note that Sasaki has obtained 

the Darboux form of the B~icklund transformations on Sine-Gordon fields [29]. Conformal 

geometric setting (or quatemionic calculus) for the B~icklund transformations on CMC sur- 
faces in Euclidean 3-space is established by Hertrich-Jeromin and Pedit [ 16]. In particular 

they showed that Bianchi-B~icklund transformations are Ribaucoure sphere congruences. 
The Sine-Gordon equation and the Sinh-Laplace equation are real form of the complex- 

ified Sine-Gordon equation. There is another interesting real form, Sinh-Gordon equation: 

w~v + sinhw = O. 

Sinh-Gordon fields describe timelike surfaces of constant positive curvature (TCPC sur- 

faces) and timelike surfaces of constant mean curvature (TCMC surfaces) in Minkowski 
3-space. 

As we saw in the previous paper [ 18], timelike surface of constant mean curvature admits 
2 × 2 matrix formulation. It seems to be interesting to study Darboux transformations on 

TCMC surfaces with real distinct principal curvatures. Since the metric of a timelike surface 
is indefinite, B~icklund and Darboux transformations are more complicated than those of 
CMC surfaces in Euclidean 3-space. In fact we can see in Section 2, there exist four kinds of 
B~icklund transformations on TCMC surfaces with real distinct principal curvatures. In this 
paper we shall formulate Darboux transformations on TCMC surfaces and present 1-soliton 
surfaces explicitly. 

1. Extended framings 

In this paper we shall consider timelike CMC-1 immersions from R 2 into E~ with real 
distinct principal curvatures. To study such immersions via the Darboux transformation 
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theory, we need 2 x 2 matrix-formalism of the Gauss-Coddazi equations. For such approach 

we refer to Bobenko [4] and Inoguchi [18]. We shall devote this section to find special 

extended framings. 

Let E~ be a Minkowski 3-space with natural Lorentz metric (., .). The metric {., .) is 

expressed as {., .) = - d ~  + d~2 + d~3 in terms of  the natural coordinate system. 

Let M be a connected 2-manifold and q) : M --+ E 1 an immersion. The immersion q) is 

said to be timelike if the induced metric I of  M is Lorentzian. Hereafter we may assume that 

M is an orientable timelike surface in E~ immersed by qg. The Lorentzian metric of  a timelike 

surface M determines a conformal structure on M. We treat M as a Lorentz surface with 

respect to this conformal structure and q9 as a conformal immersion. Our general reference 

on Lorentz surfaces is T. Weinstein [37]. 

On a timelike surface M, there exists a local coordinate system (x, y) such that 

I = e"~(-- dx 2 + dy2). (1.1) 

Such local coordinate system (x, y) is called a Lorentz isothermal coordinate system. Let 

(u, v) be the null coordinate system derived from (x, y). Namely (u, v) are defined by 

u = x + y, v = - x  + y. The first fundamental form I is written by (u, v) as follows: 

I = e °~ du dr.  1.2) 

Here H is the mean curvature of  M defined by H = 2e-°){q),~,, N) .  The functions Q :=  

(~Ou,, N)  and R :=  (~0t, v, N) define global null 2-differentials Q# :=  Q du 2 and R # :=  

R dv 2 on M. We shall call the pair of  differential Q# and R #, the Hopfpa i r  o f  M.  

Next, we shall define the Gauss map of  a timelike surface. Let M be a timelike surface and 

N a local unit normal vector field to M. For each p 6 M the point ~p(p) of E~ canonically 

corresponding to the vector Np lies in a unit pseudo 2-sphere since N is spacelike. The 
resulting smooth mapping ~ : M ~ S 2 is called the Gauss map of M. 

The constancy of  mean or Gaussian curvature is characterised by the harmonicity of the 

Gauss map (see [4] and [25]). 

Proposi t ion 1.1. The Gauss map o f  a timelike surface is harmonic i f  and only i f  the mean 

curvature is constant. 

Partial derivatives of  ~o satisfy the following formulae. 

(~o,, ~oL,) = (~ov, ,pv) = 0 ,  (~o,, ~t,)  = ~e' ,o. 1 .3)  

Now, let N be a local unit normal vector field to M. The vector field N is spacelike since 

M is timelike. The vector fields qg,, q9 t, as well as the normal N define a moving frame along 

~0. The compatibility conditions (Gauss~odazz i  equations) of  the moving frame equations 

have the following form: 

Wut, + ½ HZ e °~ -- 2Q Re -C° = 0, (G) 

Hu = 2e-°) Qv, Hv = 2e-~° Ru. (C) 
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Proposition 1.2. Let M be a timelike surface. Assume that the Gaussian curvature K is 

nowhere zero on M and has a constant sign. Then the second fundamental form H gives M 

another (semi-) Riemannian metric. With respect to this metric II, the Gauss map of  M is 

harmonic if  and only if  K is constant. 

On such surfaces special local coordinates are available [37, p. 213]. (For Euclidean case, 
see [4,11,30]). 

Proposi t ion 1.3. Let M be a timelike surface of  constant negative curvature - 1. Then there 

exists a local coordinate system (x, y) around an arbitrary point of  M such that: 

I = - sin 2 q~ d x  2 -'F c o s  2 ~b 9 ~b ~ dy- ,  H = sin-~ cos (dx 2 + dy2). (1.4) 

With respect to this coordinate system, the Gauss-Codazzi equation of the surface is written 

as following form (Sine-Laplace equation): 

~xx "q- ~gyy = sin~b. (1.5) 

The above local coordinate system (x, y) is called a second isothermic coordinate system. 

Note that the hypothesis that M is free of  umbilics in [32, Proposition 2] is superfluous. 

Since the Gaussian curvature K is constant - 1 ,  M has real distinct principal curvatures 
everywhere. 

Proposi t ion  1.4. Let M be a timelike surface of  constant curvature 4 with real distinct real 
two principal curvatures. 

(1) I f  the principal vector corresponds to smaller principal curvature is timelike everywhere 

on M then there exists a local coordinate system (u, v) around any point of  M such 
that 

I = ¼(du 2 - 2 c o s h w d u d v  + dr2),  

/ / =  sinh oJ du dr .  

(2) l f  the principal vector correspond to smaller principal curvature is spacelike everywhere 

on M then there exists a local coordinate system (u, v) around any point of  M such 
that 

I = ¼ (du 2 + 2 cosh m du dv + dr2),  

/ / =  sinh ~o du dr .  

With respect to this cordinate system, the Gauss-Codazzi equation of the surface is 
written as following form: 

oguv + sinh 09 = 0. 

The local coordinate system (u, v) in Proposition 1.4 is called a Chebyshev-null coordi- 

nate system. We shall call a timelike surface which satisfies the assumption (1) [resp. (2)] 
in Proposition 1.4 a timelike surface of (TS) ([resp. (ST)]) type. 
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Proposition 1.5. Let M be a timelike surface of constant mean curvature 1. Assume that 

M has real distinct two principal curvatures. 

(1) I f  M is of (TS) type then there exists a local coordinate system (x, y) around arbitral 3, 
point of M such that 

I = e~°( - d x 2 +  dy2), 

II = 2e "/2 - s i n h  dx 2 + c o s h ~ d y  2 , 1.6) 

Q = R =  1/2. 

(2) l f  M is of(ST) type then there exists a local coordinate system (x, y) around arbitrary 

point of M such that 

I = e ~ ' ( - d x 2  + dy2), 

II : 2e °~/2 - c o s h  dx 2 + s i n h ~ d y  2 , (1.7) 

Q = R = - 1 / 2 .  

With respect to this coordinate system, the Gauss-Codazzi equation of the surface is 

written as following form: 

-wxx  + Wyy + sinh w = 0. 

The local coordinate system (x, y) in the preceeding proposition is called an isothermic 

coordinate system or isothermal curvature-line coordinate system (cf. [4] and [16 (58)]). 
Now we shall start the split-quaternioic representation. (see also [4] for Euclidean case). 

Let us denote the algebra of  split-quaternions by H '  and its natural basis by {1, i, j ' ,  k'}. 

The multiplication of H '  is defined as follows: 

i j ' : - j ' i = k ' , j ' k ' = - k ' j ' = - i , k ' i = i k ' = j ' ,  i 2 : - l , j ' 2 = k ' 2 : l .  (1.8) 

An element of  H '  is called a split-quaternion. For a split-quaternion ~ = ~01 + ~l i + ~2J' + 

~3k I, the conjugate ~ of ~ is defined by 

= ~01 - ~li - ~ '  - ~3k I. 

It is easy to see that - ~  ---- - ~ 0  - ~( + ~_~ + ~3- Hereafter we identify H '  with a semi- 

Euclidean space E4: 

E 4 = (R4(~o, ~1, ~2, ~3), - d~o - d~l + d ~  + d~3). 

Let G = {~ 6 H ' I ~  = 1} be the multiplication group of timelike unit split-quaternions. 

The Lie algebra ~ of G is the imaginary part of  H ' ,  that is, 

.q = ImH' = {~li + ~2j' + ~3k'l~J, ~2, ~3 ~ R}. 

The Lie bracket of  ~ is simply the commutator  of  split-quaternion product. The Lie 

algebra ~ is naturally identified with a Minkowski 3-space 

E 3 = (R3(se,, ~2, ~3), - d ~ / +  d~2 + d~ 2) 

as a metric linear space. 
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We shall introduce a 2 x 2 matricial expression of H ~ as follows: 

= ~01 + ~lj' -t- ~3k' < > (~0~1 -1- ~2--~3 ~0+~3--~1-t- ~2 ~.]. (1.9) 

In particular, the matricial expressions of the natural basis of  H t are given by 

0 i <  > 
1< > 1 ' 0 ' 

( 101 to 1 0 , k '  < > 
J ' ~  > 1 

This correspondence gives an algebra isomorphism between H '  and the algebra M2R of 
all matrices of  degree 2. Under the identification (1.9), the group G of timelike unit split- 

quaternions corresponds to a special linear group: 

S L 2 R =  { ( c  a b d t E M 2 R  a d - b c = l  I. 

The semi-Euclidean metric of  H t corresponds to the following scalar product on M2R. 

(X, Y) = ½{tr(XY) - tr(X)tr(Y)} (1.10) 

for all X, Y ~ M2R. The metric of  G induced by (1.10) is a bi-invariant Lorentz metric of 
constant curvature - 1 .  Hence the Lie group G is identified with an anti-de-Sitter 3-space 
H13 of constant curvature - 1 (see [7]). 

The vector product operation of E~ is de fned  by 

× 77 = (~3~/2 -- ~2/'/3, ~301 -- ~103, ~102 -- ~2111) (1.11) 

for ~ = (~1, ~2, ~3), ~ /=  0/1, ~/2, 03) 6 E~. The vector product ~ x 0 of ~ and 1/is written 
in terms of the Lie bracket as follows: 

x o = ½[~, 01. 

Now, we shall define the Hopf-fibering for a pseudo-sphere S 2. I t  is easy to see that the 
Ad(G)-orbit  of k r ~ ~ is a pseudo-sphere: 

S~ = {~ ~ E31(~,~) = 1}. 

The Ad-action of G on S 2 is transitive and isometric. The isotropy subgroup of  G at k '  is 

Ho ] = {~01 + ~3k'l~o 2 - ~3 = -1} .  The group H i is a hyperbola in a Minkowski plane 
E~(~o, ~3). (This is a Lorentz analogue of S 1 C E2(~o, ~l)). Note that the group Ho I is 
isomorphic to the multiplicative group R* = R \ {0}. 

The natural projection Jr : G ~ SI 2, given by rr(g) = Ad(g)k  t for all g E G, defines 
a principal H i -bundle over S 2. We shall call this fibering the Hopf-fibering of S 2. Denote 
the isotropy subgroup H i at k t by K and its Lie algebra f = Rk ' .  The tangent space of SI 2 
at the origin k '  is given by m = Ri ~3 Rj ' .  



J. Inoguchi/Journal of Geometry and Physics 32 (1999) 57-78 63 

Let r be an involution of ~ defined by r = Ad(k')  = 1--If - l-Ira, where l-If and 1-]~,~ are 
the projections from g onto f and m respectively. The pair (~, r )  is a symmetric Lie algebra 
data for the semi-Riemannian symmetric space S~ = G/K.  

We shall rewrite the Gauss-Codazzi equations (G) and (C) in 2 x 2 matrix-form. Let 
~0 : M ~ E~ be a timelike surface with moving frame (~o,, ~o~,, N). The local unit normal 
vector field N is given by 

N = (~o~ x ¢Py)/IcPx x ~oyl. 

We shall define a framing & [ol by 

Ad(~[°l)(i ,  j ' ,  k') = (e-'"/2~Ox, e-'°/2cpy, N),  det ¢plo] = e,O/2. (1.12) 

The W-valued function ¢P [o] satisfies the following system of linear differential equations 
(Choose uo = w , / 4  and vo = wv/4 in [18 (2.6)]). 

O----~ t°l = ~[°lu[°] ,  O ~  [°1 = ¢b[°]V [°l. (1.13) 
Ou Ov 

( 0 - Q e  -~°/2) V [0] { lwv H o~/2) 
= - s e  (1.14) 

U[°] = ~-eH o~/2 l w, ' , ~ Re -'°/2 0 " 

In this section we concentrate our attention to TCMC surfaces of (ST) type or (TS) type. 
Timelike circular cylinders and timelike hyperbolic cylinders are typical examples of 

timelike surfaces with properties (TS) and (ST) respectively. 
Taking an isothermic coordinate system (x, y), we can normalise the Hopf pair so that 

Q = R = - 1 / 2  [resp. 1/2] on a timelike surface of (TS) [resp. (ST)] type with constant 
mean curvature 1. We get the following zero curvature representation for timelike surfaces 
with constant mean curvature 1 (cf. [4]). 

Proposi t ion 1.6 ([18]). Let ¢pl°l(u, v) be a solution of the following linear differential 
equations: 

O q~[0] ~[Olu[0I()Q ' 0 q~[0] ~[0]VI01(X), 

1 (  0 Xe -w/2 ) 1 (  Wv e'~/2 ) 
UI°I(x) = ~ e,O/2 , V[°I()~) = ~ _)_le_,O/2 . (1.15) 

Then 

~°z =Ot x 

7t~ [°] Ad(q:,~°l)k ', L " = = - 4 - e - , t ~ R  (1.16) 

describes a loop of timelike constant mean curvature 1 surfaces with first fundamental form 
[̂Ol I = e °~ du dv andHopfpair Qx = -)~/2,  Rx = -)~-1/2.  The Gauss mapping of each q~x 

is apz [°]. Here the function w is a solution to the Sinh-Gordon equation (ShG). 
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Proposi t ion 1.7. Let q3[°](u, v) be a solution o f  the following linear differential 

equations." 

a, tol = , tolutokz), o__, tol =  tOJvtOJ(x), 
Ou x Ov z 

1 (  0 - ) w - ~ ° / 2 ) ,  1 (  coy 
U[10]()") = 2 e ~°/2 09,, / V[0](~') = 2 ~.-le-°J/2 

eC°/2 ) 
0 . (1.17) 

Then 

,[Ol=Ad(qbz[Ol)k, ' ) ~ = + e  2t t E R  = ( C J ) - ,  _ v .x  
Ot x 

(1.18) 

describes a loop o f  timelike constant mean curvature 1 surfaces with first fundamental form 
I = e ~° du dv and Hopfpa ir  Qz = )~/2, Rz = )~-1/2. The Gauss mapping of  each ~o[z 0] is 

ap [°]. Here the function w is a solution to the Sinh-Gordon equation (ShG). 

lO] We can see that each timelike surface 9 = ~ol of (TS) [resp. (ST)] type is associated 
[o] to timelike surfaces ~o z , )~ < 0 of (ST) [resp. (TS)] type. Hereafter we shall restrict our 

attention to surfaces of (ST) type for simplicity. The description of (TS)-type surfaces is 
similar to that of (ST)-type surfaces. 

For the study of Darboux transformations, We have to consider the following transform 
of the frame: 

0 ) 
q~:=T~2  l /v /~  , X > 0 .  (1.19) 

The following formulae can be easily verified. 

U ( Z ) : = ( ~ z )  - l  q ~ z = ~  • w,  ' 

( - L 0  'e'° ) 
0 1 0 

V 0 0  := (q~z) -1 ~v-vq~Z = ~ _ ) _ l e _  ~ (1.20) 

Two matrix-valued functions (Lax pair) U 00  and V ()0 are naturally extended for)~ E R*. 
Hereafter we shall denote the extended functions by the same letters U ()0 and V 0.). 

Let ~x : R 2 x R* ~ SL2R be a fundamental solution to the system: 

0 0 
7 ~ 0 x  = ~ozU00, - - ~ z  = ~ V ( ) 0  (1.21) 
Ou Ov 

with initial condition ~x (0, 0) _= 1. We shall give a characterisation of the framing q>x 
defined as above in terms of Lie algebra theory. 

Recall the Hopf-fibering zr : SL2R ~ S~ of the pseudo 2-sphere S 2. The pseudo 2-sphere 
S~ = G / K  = SL2R/R* is represented as a Lorentzian symmetric space. The Lie algebra 
g of G is decomposed as ~ = f @ m. Define the g-valued 1-form otz by otz = q>~-I dq>x. 
Note that c~x = U(~.) du + V 0 0  dr.  We can decompose c~ = al  along the decomposition 
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~q = f G m by ~ = oq + ~,~. Further ~ has the type decomposition with respect to the 
conformal structure of M. 

Ol Ol du  + ol II d r ,  ot ~ ' ' o~ ~ " " = = O t f  "-I- Ot m , = O t f  -I- Ot m . 

We can get the following proposition easily. 

Propos i t i on  1.8. Let ~z  be a framing defined by (1.21). Then the t~-valued 1-form ~z by' 

Ot>o = qO~- I d ~ - I  h a s  t h e  f o l l o w i n g  f o r m . "  

1 It tt c~z = ~ + ~otl. + ,k- oq., c~ r = 0. (1.22) 

It is easy to see that q~ is an extended framing (in the sense of harmonic map theory). 
With respect to the extended framing (1.21), the immersion formulae of timelike CMC 
surfaces are written in the following form. 

Propos i t ion  1.9. Let ~ be an extended framing (1.21). Then 

] qg)~ = ~ . <~)~-1 _ 1~)~ , 1/r~. = Ad(qbz)k', )~ = -4-e 2t, t E R (1.23) 

describes a loop o f  timelike CMC-1 surfaces of(ST) ~pe. Fundamental associated quantities 

o f  ~o~ are given as follows: 

I~ = I = e ~° du dr, Qz = -)~2 /2, Rz - - )~-2/2 .  (1.24) 

The Gauss map o f  each ~o~ is ~ .  In particular (u, v) is an isothermal curvature-line 

coordinate system o f  qg+ t. 

By using the parallel surface procedure, we get the following immersion formula for 
timelike surfaces of constant curvature 4 (cf. [4]). 

Cor o l l ar y  1.10. Let q~z be an extended framing (1.21). Then 

1 0  
Fz -- 2 Ot q~z " ~)~-1 = ~0)~ -~- ~ 1//~. (1.25) 

describes a loop of  timelike constant curvature 4 surfaces with real distinct principal cur- 

vatures. The Gauss map o f  each Fz is ¢tz. The fundamental associated quantities o f  Fz are 

given as follows: 

Iz = ¼ 0. 2 du 2 + 2 cosh co du dv + ) - 2  dr2), 

/ /z  = / / =  sinh o9 du dr .  (1.26) 

Example  1.11 (The vacuum solution). Here we shall solve the extended framing equation 
(1.21) explicitly for the vacuum solution o9 ~ 0. The extended framing ~z  corresponding 
to the vacuum solution is given by 

(cosh{½0.u  - X-Iv )}  sinh{½(Zu - X- 'v)} ) 

@x = \ sinh{½(Zu - ~ . - 1 1 ) ) }  cosh{~(Xu - k - iv )}  (1.27:) 
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We get the following formulae. 

~ox = ~ )~u + )~-lv ; 

- cosh0~u - ) - I  v) 

[ 
lp;~ = cosh(Zu - )~-1 v) J 

I~. = I = du dr ,  Hz = 1, Q~. = -3~2/2, Rz = - )~ -2 /2 .  (1.28) 

Each timelike surface ~oz is a connected component of  a timelike hyperbolic cylinder: 
~2 + ~2 = 1/4. (One sheet of  the 2-sheeted hyperboloid determined by ~3 < 0). Note 

that the parallel surface ~z = ~0z + apx is another connected component of the hyperbolic 

cylinder (another sheet determined by ~3 > 0). Each ~bz has constant mean curvature 1 and 
Gauss map - ~ z .  The parallel surface Fz degenerates to a line (~2-axis). 

R e m a r k .  In this paper we shall restrict our attention to TCMC surfaces with real distinct 

principal curvatures. We can also consider Biicklund transformations on TCMC surfaces 

with real repeated principal curvatures. However such surfaces have restrictive shapes. 

More precisely we can prove the following proposition (cf [12] and [24 (4.80)]). 

Proposition 1.12. Let (M, ~o) be a timelike surface of  constant mean curvature. I f  (M, ~0) 
has real repeated principal curvatures and corresponding eigenspaces are one-dimensional, 

then (M, ~0) is locally congruent to a B-scroll. 

2. Bficklund transformations 

In her thesis [24], McNertney has developed the theory of B~icklund transformations on 
timelike surfaces of  constant positive curvature. In this section we shall recall and rewrite 
the results by McNertney for our use. In particular we shall show that, in timelike surface 
geometry, there are four kinds of  B~icklund transformations. 

We start with the following definition. 

Definition 2.1. Let M and ~t  be semi-Riemannian surfaces in Minkowski 3-space E 3. A 
line congruence between M and ,Q is a local diffeomorphism l : M ~ M such that the 

line p/~,/3 = l(p) is tangent to both M and ,Q for any p. The line congruence l is called a 
Biicklund transformation if 

-.~ ---> 
(1) (p/3, p/3) is a constant independent of  p;  
(2) The scalar product (Np, N~) of two unit normal vectors Np of M at p and Np of ~t  at 

/3 is a constant independent of  p. 
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The notion of B~icklund transformations for timelike surfaces parallels the classical theory 

in so far as constant curvature is necessary for the existence of "pseudo-spherical line- 
congruence"; however, in timelike surface geometry, the Gaussian curvature should be 
positive. We can see that this leads to the investigation of various examples which have no 
analogue in Euclidean surface geometry. For example we shall see in Section 4, there exist 
TCMC surfaces corresponding to add-soliton solutions to (ShG). 

Proposition 2.2 ([24]). Let M and ,(4 be timelike surfaces. Suppose a Biicklund transfor- 
mation exists between M and IV1. 

---+ - - r  2 (1) / f  (p~, pfi) = < 0 (timelike line congruence) then (Np, /~/~) = cos 0 for  some 

constant 0 E (0, zr). In this case the Gaussian curvatures K of  M and K of f/l are 
same positive constant K = / ¢  ~ sin 2 O/r 2. 

~ r 2 (2) I f  (p~, pfi) = > 0 (spacelike line congruence) then (Np, ~t#) = cosh 0,for some 

constant O. In this case the Gaussian curvatures K of M and K of  f l  are same constant 
K = / ¢  = sinh 20 / r  2. 

Proposition 2.3 ([Intergrability theorem 24]). Let M be a timelike surface of constant pos- 

itive curvature K. 

(1) I f K  = sin e O / re for some constants O andr. Then for any initial data (P0; X0) c T/,~M 

such that Xo is a non principal timelike unit vector, there exists a timelike Biicklund 

transformation I from a simply connected regin containing po to a timelike surface 1(4 

with Po,/~0 = rXo and (Np, N~) = cos 0 
(2) l f  K = sinh 2 0 / r  2 for some constants 0 and r. Then for any initial data (P0: X0) E 

TpoM such that Xo is a non principal spacelike unit vector, there exists a spacelike 

Biicklund transformation I from a simply connected region containing Po to a timelike 

surface l(1 with p0/50= rXo and (Nr,, N~) = cosh 0. 

Proposition 2.4. Let M and AI be timelike constant positive curvature 4 surfaces of  (ST) 

[resp. (TS)] ~.pe and let l : M --+ ~1 a Biicklund transformation. Then the Chebyshev-null 

coordinate system (u, v) of  type (TS) [resp. (ST)] on M gives a Chebyshev-null coordinate 

system of ~.pe (TS) [resp. (ST)] on 1V1 via l. 

The preceeding proposition implies that the B~icklund transformation between timelike 
~ 

surface M and M induce the transformations between Sinh-Gordon fields (cf. [16 (60)]) 

and (1.26) in [30]). 

Corollary 2.5. Let (M, F) be a timelike constant curvature 4 surface of type (TS). Then 
(1) the timelike Biicklund transform F of  F with data (r, 0) such that sin 2 0 / r  2 = 4 is 

given by 

sin 0 / cosh(&/2) sinh(d~/2) / 
P = F + ~ - -  [ cosh(og/2)Er + sinh(og/2) / " (2.1) 
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Here the coordinate system (x, y) is defined by x = (u - v)/2, y = (u + v)/2. The 

Sinh-Gordon fields 09 and ~o are related by 

~ u  = -)~ sinh , 

0 ( ~ - - ~ ) = Z - l s i n h ( ~ - ~ ) , ) ~  c o t 0 + c s c 0 ~ R * .  (TBs) 
Ov 

(2) the spacelike Biicklund transform [~ o f F  with data (r, O) such that sinh 20/r 2 = 4 ts 

given by 

sinh 0 { sinh(&/2) cosh(ff~/2) _ } 
/~ = F + ~ cosh(o9/2) F~. + --~Vsinh(w/2) . . (2.2) 

The Sinh-Gordon fields o9 and & are related by 

Ou 

O ( ~ - ~ )  = ~.-1 cosh (t~ 2 o9 ) ;~ = coth 0 + csch0 ~ R*. (SBc) 
8v 

Corollary 2.6. Let (M, F) be a timelike constant curvature 4 surface of type (ST). Then 

(1) the timelike Biicklund transform F o f F  with data (r, O) such that sin 2 0/r24 is given 

by 

sin 0 j cosh(&/2) F sinh(&/2) } 
/~ = F + T / sinh(og/2) x + cosh(og/2) Fv . (2.3) 

The Sinh-Gordon fields o9 and & are related by 

- -  = -)~ cosh , 
Ou 

0 ( ~ - - ~ ) = ) ~ - ' c o s h ( - ~ ) , ) ~  c o t 0 + c s c 0 ~ R * .  (TBc) 
Ov 

(2) the spacelike Biicklund transform F o f F  with data (r, O) such that sinh 20/r 2 = 4 is 

given by 

sinh0 { sinh(&/2) cosh(~b/2) F } 
P = F + ~ - -  sirda(og/2) E r + ~  y . (2.4) 

The Sinh-Gordon fields o9 and & are related by 

0 (w 2+-~w) = -2. sinh ( ~ - - - ~ )  , 
Ou 

O ( ~ ° - ~ o g ] = ~ . - l s i n h ( ~ ° + _ w ] ,  )~ coth 0 + cschO ~ R*. (SBs) 0v \ 2 , / \ 2 , 1  
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The parallel surface procedure induces transformations on timelike CMC surfaces. In the 

next section we shall treat induced transformations on timelike CMC surfaces and give a 

reformulation of  induced (B~icklund) transformations in terms of  extended framings. 

The formulae (TBs), (SBc), (TBc) and (SBc) are reffered as B~icklund transformations 

of  Sinh-Gordon fields. In Euclidean CMC surface geometry, B~icklund transformations of 

Sinh-Laplace fields are introduced by Bianchi (cf. Theorem 5.4 in [31]). 

In general B~icklund transforms of  a real Sinh-Laplace field is complex valued. Applying 

appropriate two successive B~icklund transformations on a Sinh-Laplace field we get a new 

real Sinh-Laplace field (see Theorem 1.2 and Corollary 1.3 in [30]). 

In our case - timelike CMC surfaces - we are working in real category, every B~icklund 

transformation gives a new Sinh-Gordon fields for any given Sinh-Gordon fields. 

R e m a r k .  Babelon and Bernard [1] has been developed the soliton theory, o f  (ShG). How- 

ever they only considered (SBs). 

3. B i i c k l u n d  t r a n s f o r m a t i o n s  v ia  e x t e n d e d  f r a m i n g s  

In the preceding Section we saw that B~icklund transformations between timelike sur- 

faces induce transformations between Sinh-Gordon fields. Hereafter we shall only consider 

spacelike Biicklund transformations (SBs) for simplicity. 

In this section we shall reformulate (SBs) in terms of  extended framings. 

Let o9 be a Sinh-Gordon field defined on the whole plane R 2 and ff~ a B~icklund transform 

of o9 related by (SBs). 

We shall define the function F by ~ - o9 = 2 log F .  Then the function F satisfies the 

following Riccati type differential equations. 

OF )~F2 )~ 
Ou -- 2 - ogu F + -~ , 

OF ~-J X -]  
-- - - e a ~ F  2 - e -~.  (3.1) 

Ov 2 2 

As is well known, Riccati type differential equations can be linearised in the following 

way (cf. [29] and [35].) 

P r o p o s i t i o n  3.1. Let 09 and ff~ be Sinh-Gordon fields. Then ~o is a Biicklunk transform of  o9 

related by ( SBs ) if and only i f  the pair o f  functions ( f , g) such that (o - 09 = 2 l o g ( f / g )  is 

a solution to the following equations: 

0 0 
..o~(f' g) = ( f ,  g)U(X),  __~-~ (f ,  g) = ( f ,  g)V(X) ,  

1 - u ,k V(X) = ~ _X_~e_,O . (3.2) u ( x )  = ~ w,,  ' _ 

Namely ( f ,  g) is a row solution o f  the extended framing equation (1.21). 
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This proposition implies the following reformulation of (SBs) in terms of extended 
framings. 

Corollary 3.2. Let cbz be an extended framing defined by (1.2 1) with Sinh-Gordon field 09 

and ( f  , g) a row vector of  ~z.  Then if9 := 09 + 2 log F, F - f /g is a Biicklund transform 

of  09 related by (SBs). Hence the timelike surface (J corresponds to ~o and timelike surface 

~p corresponds to 09 have same conformal structures. 

The Riccati form (3.1) of (SB s) implies that the Sinh-Gordon fields have infinite numbers 
of conserved densities. In fact we get the following. 

Corollary 3.3 (Conservation law). The Sinh-Gordon field 09 satisfies the following conser- 

vation law: 

()~-ie~°F) + ~vv ()~F + 09u) = 0. 

Remark. Hertrich-Jeromin and Pedit have obtained a quaternionic representation of the 

Riccati form for Sinh-Laplace fields in [16, Eq. (62)1. 

4. Darboux transformations 

In this section we shall reformulate B~icklund transformations on timelike CMC surfaces 
as transformations on extended framings. More precisely, we shall consider the following 
problem: 

Let ~ be an extended framing (1.21). Find polynomial maps Rz into the twisted loop 

group of SL2R (or GLeR) such that ~z  Rx is also a solution to the extended framing equation 
(1.21). 

Such polynomial maps Rx are traditionally called Darboux matrices [23]. The results in 
this section are Lorentzian version of those in [26]. 

We start with some preliminaries on loop groups. Let us denote r the involution of a 

Lorentzian symmetric space S~ = SLzR/R* as before. More explicitly, r is given by 
r = Ad(k'). Note that r can be extended to general linear group GLzR in a natural manner. 

We shall denote the extended involution by the same letter. We shall use the following loop 
groups. 

The free loop group of GL2R; 

LGLzR := {y : R* ~ GLzR ] smooth}; 

The free loop group of SL2R; 

LSL2R := {y : R* -+ SL2R [ smooth}; 

The twisted loop group of GL2R; 

LGL2Rr := {y ~ LGL2R I zy(~.) = Y(-)0}; 
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The twisted positive power polynomial loop group of GL2R; 

LpolGL2Rr := y e LGL2Rr  y()~) = Z gJ~'J for some N e N . 
j=o 

The twisted loop group LSLzRr  and the twisted positive power polynomial loop group 

L;olSL2Rr of SL2R are defined in a similar fashion. 

Note that every extended framing (1.21) can be regard as a mapping from R e into L SL2 R~. 

Proposition 4.1. Let ~ be an extended framing defined by (1.21) with Sinh-Gordon field 
co. Then r@_z is also an extended framing satisfyning ( 1.21 ) with Sinh-Gordon field co. 

Let us denote Pij by the (i, j ) -entry of  the LGL2R-valued function Px. Then we get the 
following useful lemma. 

L e m m a  4.2. Let Px be a LGL2R-valued function. Then Pz is r-equivariant if and only if 
the diagonal entries P II and P22 are even function of )~ and the off diagonal entries P J2 
and P21 are odd functions of )~. 

Let ~ be an extended framing defined by (1.21). We shall construct L;otGL2Rr-valuled 

Darboux matrixes Rx (not necessary L;olSL2Rr-valued).  By Lemma 4.2, Rz has the fol- 
lowing form: 

[ ~ f2 j  ).2j ,~g2j+l)~ 2j+l ) 
RZ = ~ x~f2j+l)2j+l Eg2j)2j  . (4.1) 

Without loss of  generality, we can assume that the Darboux matrix Rz " R 2 ---+ L+~IGL, Rr p 
has the following form. 

N 

j=0 

RN(U, V)= I .I' i f N = 2 m ,  
/ j ,  i f N = 2 m + l .  

(4.2) 

Now we shall state our existence results on Darboux matrices. We shall prepare a nota- 
tional convensions. For any loop P : R 2 ~ LGL2R~, we shall define two functions Pl 

and P2 by P1(~-) = pll(~.) + P2100, P2()0 = P l200  + P22()0. 
We shall take real vectors ~, ? e R N such that )~i 5 ~ 0, )~i 7 ~ q-~'j  and cj ~ O. We shall 

call such a pair of  vectors (~, ~) a Darboux data. for any Darboux data 0~, ?), we shall 

define auxility matrices as follows: 

A := diag(Xl . . . . .  ~ 'N) ,  

/~k := (~bk(~l) -'l'- (--1)k cl~)k(--~l ) . . . . .  ~bk()~N) n t- (--1)k cN~)k(--)~N)) t, k = 1, 2, 
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(71, A?9 . . . . .  A2m-271, AZm-l?2),  if U = 2m, 
a l  := (?1, A/~2, , A2m-l/~2, A2m?l),  if U = 2m + 1, 

{ (/~2, A/z1 . . . . .  A2m-2/~ 2, A2'n-l/z'~), if U = 2m, 

a2 := (?2, A? I ,  , AZm-l? l ,  AZ'n?l), if N = 2m + 1. 

Lernma 4.3. Let (~, ~) be a Darboux data for an extended framing cPz defined by (1.21) 
with Sinh-Gordonfield o9. I fde t  A1 ~ 0 and det A2 5 ~ 0 on R 2 then there exists a unique 
singular mapping Rz : R 2 ~ L+ojGL2Rr of the form (4.2) which satisfies the following 
adding-soliton properties: 

1 11)  ( 1 , - c j )  1 - qJzRzlx=z i (0,0) ,  j = 1 . . . . .  N. (ASP) 

Proof.  The adding-soliton properties (ASP) determine uniquely the mapping Rz. In fact, 
if we write Rz as 

{ "~f2j ~.2j  ~'g2j+l)~ 2j+l ) 
RZ = ~ ~f2j+l)2j+l  ,~g2j)2j 

then (ASP) are equivalent to the following linear algebraic equations for f = (f0 . . . . .  
f N - l )  t, g = (go . . . . .  gN- l )  t: 
(1) N = 2m: 

A l f  = -A2m?l ,  A2g, = -A2m?2.  

(2) N = 2 m + l :  

A , f  = --Aem+' ?2, A2~ = -A2m+I ?I. 

Hence the results follows. [] 

Remark .  The adding-soliton properties (ASP) can be rewritten in the following form: 

~i()~j) -q- (--1)icj~i(--)~j) = 0, i = 1, 2, j = 1 . . . . .  N 

for q/x = ¢PzRz (cf. [7, p. 134 (3.2)] and [8, p. 138 (22)].) 
By using the Cramer's formula, we get 

L e m m a  4.4. Let Rz be a maping in Lemma 2.3, then 

N N 
fo = (--1) N U)~i detA2 

i=1 det A - ~  go = (--1) u I-I)~i detA1 ' det A, ' i=1 

The following is the main result of this article which may be considered as a timelike 
version of Muto [26]. 



J. lnoguchi/Journal of Geometry and Physics 32 (1999) 57-78 73 

Theorem 4.5. Let ~ be an extended framing defined by (1.21) with Sinh-Gordon field 

co. For any Darboux data (~, ?) such that det A 1 ~ 0 and det A2 5 ~ 0 on R 2 there exists 
R 2 + unique singular Darboux matrix Rz : ---> LpolGL2R r such that 

(1) Rz has a form (4.2); 

(2) Rz satisfies (ASP); 

(3) cb :=  co + 2 log (det A 2 / det A l ) is an iterated Biicklund transform o f  co rela ted by (SBs); 

(4) ~u = (--I)Ncou -- ( f N - I  -- gN- I ) ;  
(5) The determinant det Rz of  Rz is independent o f  u and v. 

Further det Rz is a polynomial o f  )~ o f  degree 2N; 

(6) det Rz = 0 at )v = -+-)v j, j = 1 . . . . .  N. 

Proof. Let Rz be a singular mapping constructed in Lemma 4.3. We shall define auxility 

functions L Cj~, L C2), M (I) and M ~2) by 

0 
L(I)(u, p , ; ) v ) :=  ~uu~ 1 -- 

O LI21(u. v, " )~) := 7uuO2 - 

8 
Mill(u ,  v, ; k) :=  ~--~v Ol + 

8 
MIEn(u, v, " ~.) :=  7vvO2 + 

)v ( -- 1 ) N , 1 ) N 
~ 2 - + - - - " ~ | C O u - - ( - -  ( f N - I -  g N - I ) } ~ l ;  

)~ (--1)N {COu -- ( - - I ) N ( f N - I  -- gN- I )}~2 :  

e - ~ ) - 1  fo~.~ 
2 go 

e - ' " ) - I  g0~p I 
2 7oo 

Where ~Pl and 1//2 are defined by lPl = ~Pll + lP21, lP2 = lPl2 "q- 1P22 for q/z = q~, Rz. One 
can show that these four functions vanish. For simplicity we shall only show that L ~ I ~ = 0. 

The function L Cl) has the following form: 

L f ll (u, v, )~) = Z F2j(u'  t)))v2J~l "}- Z F2j+I (U' 13))v2"J-*-lq~2' 

In particular the degree of L (l' is N - 1. Evidently the auxility function L ~1) satisfies the 

following condition (see Remark to Lemma 4.3.) 

LCl)(u, v; kj)  - c jL( l ) (u ,  v; - )vj)  = O. 

Hence the vector valued function F = (Fo, Fi . . . . .  FN_I)  r satisfies Ai/3 = 6. Since 

Aj i s i n v e r t i b l e w e g e t / ~ = 6 a n d h e n c e L  Il) = 0 .  [] 

As we remarked in the end of  Section 2, in Euclidean CMC surface geometry, we should 

have even soliton number N = 2m. 
In timelike CMC surface geometry, we need not complexify the Lie group SL2R we can 

construct Darboux matrix of  odd soliton number satisfying (ASP). Thus timelike surfaces 

corresponding to odd-soliton solution have no Euclidean analogues. 
If  we choose a seed extended framing q~x as the extended framing corresponds to the 

vacuum solution in Example 1.11, then the Darboux transform q3z = q~ Rz/ , / [  det R~[ 

gives multi-soliton solutions of  the Sinh-Gordon equation. 
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E x a m p l e  4 . 6  (One-soliton solutions). Let q~z be an extended framing defined by (1.21) 

with Sinh-Gordon field o9 and (Zl, cl) = (k, c) ~ R e a Darboux data for @z. Then the 

Darboux matrix Rz of degree 1 determined by the data (k, c) is given by 

R~=ZJ'+( f°O goO)" 

_k~b2(k)_ q- c~b2(-k) _k~bl (k) - C~bl (-k) 
f0 = tPl (k) - c~bl ( - k ) '  go = ~b2(k) + cq~2(-k)" 

The B~icklund transform ff~ of  o9 is 

~2(k) -- cq~2(--k) 
~b = co + 2 log 

~l(k) + Cq~l (-k)" 

Now we choose ~x as an extended framing corresponding to the vacuum solution w = 0 

described in Example 1.11 and c = 1. Then the Darboux matrix determined by the data 

(k, 1) is 

(-kcoth½(ku-k-'v) Z ) 
R ~ =  Z - k t a n h ½ ( k u - k - l v )  " 

This Darboux matrix Rz is singular at Z = +k.  The B~icklund transform r~ of  the vacuum 

solution is given by 

ff~(u, v) = 4tanh -1 exp(ku - k - I v ) .  

This solution & is a one-soliton solution of  the Sinh-Gordon equation (ShG). 

The loop of  timelike surfaces corresponds to the 1-soliton solution ff~ is 

- k 2 + Z 2 - 
Zk ku - k-iv cosh(Zu - Z - Z v ) + ~ k 2  Z2 sinh(Zu - Z - I v )  k2 _ Z--------- 5 tanh 2 

Zk ku - k-iv 1 
~Z = k2 _ Z~ 2 tanh 2 + ~ (Zu - Z- l v) 

Zk ku -k - iv  1 k 2 + Z  2 
k2 _ Z------- ~ tanh 2 sinh(Zu - Z -  1 v) 2 k 2 -- Z 2 cosh(Zu - Z -  11)) 

The Gauss map ~x of  each ~z is 

k2 + Z2 I 0 1 
- sinh(Zu - Z -  l v) 

~)~ -- k2 -Z2  [_ cosh(Zu - k - i v )  

F coth(ku - k-iv) cosh(Zu - Z - i v )  -] 
- 2 Z k  / - cosech(ku  - k-iv) +k2 --TT-~ J 

L - coth(ku - k -  l v) sinh(Zu - Z- l  v) 

The parallel surface/~z of  ffz with constant curvature 4 is 

Zk I c°sech(ku-k-lv)c°sh(Zu-Z-lv) I 1 I !  1 
/7~ - -  k2 Z 2 --c°th(ku-k-lv) +~(Zu+Z-tv) . 

- cosech(ku  - k -1 v) sinh(Zu - Z -1 v) 
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5. B~icklund transformations on spacelike surfaces 

In this paper we have considered B~icklund transformations on timelike surfaces. In 

Minkowski 3-space E 3, we can consider B~icklund transformations on spacelike surfaces. 

In this section we shall give some fundamental results on this topic. We can deduce the 

following proposition in a similar way in [6,27]. 

Proposition 5.1. Let ( M, F) and (hT/,/~) be spacelike surfaces. Suppose a Biicklund trans- 

~ r2 formation exists between (M, F) and (1(4, F). If  (p~, p~) = > 0 then (Np, ~I~) = 
cosh O for some constant O. In addition the Gaussian curvatures K of M and K of M are 
same positive constant K = / ~  ~ sinh 2 0 / r  2. 

We can consider B~icklund transformations between spacelike surfaces and time like 

surfaces. The following proposition is due to Palmer [28]. 

Proposition 5.2 ([28]). Let (M, F) be a spacelike surface and (~7/, ~-) be timelike surfaces. 

~ r 2 Suppose a Bdcklund transformation exists between M and 2(4. I f  (p~, p~) = > 0 then 
(Np,/~/p) = sinh O for some constant O. In addition the Gaussian curvatures K of M and 

of l~l are same negative constant K = / ~  ~ - cosh- O / r". 

The B~icklund transformations between spacelike surfaces of  K = - 1  and timelike 

surfaces of K -- - 1 induce transformations between Sinh-Laplace fields and Sine-Laplace 

fields as follows [28] (cf. [32].). 

Corol la ry  5.3. Let (M, F) and (AT/,/~) be surfaces as in the preceeding proposition and 
(x,y) be the second isothermic coordinate system of (M, F). Namely the first and second 

fundamental forms of (M, F) is written in the following forms: 

__ O9 O9 
1 = sinh 2 o9 dx 2 + c°sh 2 o9 d r 2  H = sinh 5- cosh ~ ( d x  2 -k- dv2). (5.1) 

Then the coordinate system (x, y) is a second isothermic coordinate system of (1(4, I:) 

described in Proposition 1.3. Namely, with respect to the coordinates (x, y), the first and 

second fundamental forms of (~VI, F) are written in the following form: 

49 ~ 4, 4' I = - sin 2 _4) dx 2 + c ° s  2 -2 d r - ,  H = sin ~ cos "~ (dx 2 + dr2). (5.2) 

Here co and 49 are solutions of Sinh-Laplace and Sine-Laplace equations respectively. 

ogxx + co>.>, = sinh w, 49xx + 49>.>, = sin 49. 

The immersions F and I: are related by the following line congruence. 

{ sin(49/2) cos(49/2) } 
/7 = F + cosh0 sinh(og/2) Fr + cosh(og/2) Fy . (5.3) 
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The Sinh-Laplace field 09 and Sine-Laplace field (b are related by the following formulae: 

) o~ ~ ~o 
~bx + Ogy = - s e c h  0 sinh -- cos - - tanh 0 cosh sin 

2 2 2 2 2 '  

(~by - OOx) o9 sin ~b tanhO sinh o9 ~b ~- = sech 0 cosh ~- ~ - -~ cos 2" (5.4) 

With respect to the complex coordinate z = x + x/~-f y, the formulae (5.4) can be written 
in the following forms: 

OZ (q~ + ~ / ~ e ) )  = ~/-Z--lk s i n  4~ - ~o , 

O~ (¢ - ~ / -Z- l ° ) )  = - ~ / - Z - l k  s i n  4~ - o) , 

k = - tanhO - ~ / ~ - s e c h  0 e S I. (5.5) 

The formulae (5.5) are essentially due to G. Leibbrandt [22]. See also [28]. 

The B~icklund transformations in Proposition 5.2 induce transformations between har- 

monic maps from a Riemann surface into H 2 and S 2. To describe the induced (B~icklund) 

transformations between harmonic maps into H 2 and S 2 explicitly is an interesting problem 

for us. The Darboux form of a B~icklund transformation on spacelike surfaces with constant 

curvature will be given in the forthcoming paper [19]. 

R e m a r k .  The Gauss-Codazzi equations ( G) and ( C) imply that for every simply connected 
timelike CMC-1 surface in E~ there exists a timelike extremal surface in S~ which is iso- 
metric to the original one (so-called Lawson correspondent.) Using our results on Darboux 
transformations, we can construct multi-soliton extremal surfaces in S 3. Note that timelike 
extremal surfaces in S~ may be considered as simple mathematical models of rigid strings 
in particle physics and cosmology [2,10,33]. 

Further Sinh-Gordon fields are also related to projective differential geometry. We shall 

study Darboux transformations on surfaces in real projective 3-space in [20]. 
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